
1

The Game Loop and Frame Rate

Management
Brandon Foltz

www.brandonfoltz.com

Revision 1.0

© 2011

http://www.brandonfoltz.com/

2

Contents
Introduction...3
1.0 The Game Loop ...3

1.1 What is the Game Loop?...3
1.2 Implementing a Game Loop..4

2.0 Frame Rate Management..5
2.1 Fixed Frame Rate..5

2.1.1 Implementing a Fixed Frame Rate Game Loop..................5
2.1.2 Introducing SDL..6
2.1.3 Using SDL to implement frame rate control.......................6

2.2 Variable Frame Rate..7
2.2.1 How it works...8
2.2.2 Implementing a Variable Frame Rate Game Loop..............9

Conclusion..11

3

4

Introduction
This lesson is intended for someone who is interested in learning the basics of game

programming. I've assumed that you know almost nothing about game programming, so if you're a

beginner then you're in the right place. You don't have to be an expert programmer, but you should be

able to understand common concepts and programming fundamentals. The examples in this lesson are

written in C, though they should be easy to understand if you've used a language with syntax that is

similar to C such as C++, Java, or PHP.

1.0 The Game Loop
1.1 What is the Game Loop?

Most games consist of a series of steps that are repeated until a certain condition is met, or an

important event takes place, at which point the game logic changes accordingly. For example, in PONG

there are several things that happen repeatedly until someone wins the game. The game has to update

the position of the ball on the screen based on it's velocity and direction, take input from the player(s)

and update the paddles position on the screen based on this input, detect when the ball impacts a

players paddle or top/bottom of the screen and take the appropriate action (such as bouncing the ball

back), and detect if the ball has reached a players goal and increment the score accordingly (and then

reset the ball, of course).

In a real-time game like PONG, each of these steps are repeated many times per second. More

specifically, they happen every time the frame is updated. This is dependent on the games frame rate,

but we'll get to that in a bit.

The series of steps I've described above take place in the Game Loop. This is the loop that

contains all of the logic that needs to be repeated every frame. Even turn-based non real-time games

have a game loop, although it may not cycle as often as in a real-time game like PONG, or Galaga, or

Counter-Strike. However, in this lesson I'll be focusing on the game loop as it's used in a real-time

game like those mentioned previously. If you're interested in making turn-based non real-time games

(like Chess or Tic-Tac-Toe), the section on Frame Rate Management may not be relevant (depending

on how you implement your game logic). However, when it comes to game development, knowing

more certainly won't put you at a disadvantage. Even turn based games could be built on a constantly

5

updating game loop like one used in Counter-Strike, and your game logic would have to be written to

handle this (it would probably spend a lot of time in an idle-loop, waiting for a player to provide input

for their turn).

1.2 Implementing a Game Loop
While the job of the Game Loop is an important one, it is not a particularly complex thing. At

it's base, it is a loop just like any other. The game loop has to start at some point, and will continue to

loop until some condition is met. An example game loop is displayed below, written in C.

int bRunning = 1;

while (bRunning)

{

//game logic goes here

}

The above loop will cycle infinitely until something in the game logic sets bRunning to zero.

This is a very primitive game loop, but it's the base upon which we will build a more advanced game

loop. If you're fresh off the “don't-know-a-thing-about-game-programming” train, we can add some

abstracted functions into the example above, to give you a better idea of what might go on in the game

loop.

int bRunning = 1;

while (bRunning)

{

//some functions for a PONG game

GetPlayerInput();

MoveBall();

MovePaddles();

DetectCollisions();

UpdateScreen();

}

6

2.0 Frame Rate Management
2.1 Fixed Frame Rate

The example game loop presented in the last section is a good start. Though without some more

code it will run uncontrollably, and at different speeds on different computers! This is certainly

undesirable, so this brings us to Frame Rate Management.

Assuming your game is going to be real-time and have graphics, the graphics displayed on the

screen are going to need to be updated repeatedly. The rate at which they are updated is called the

Frame Rate. If you're a movie aficionado, you probably know that the images displayed in movies are

updated at a specific frame rate as well. The difference between the frames in games and movies is that

in a movie, each frame is already created and ready to be displayed from a file or film. In a game, each

frame has to be created on the spot, very quickly by the computer.

If we choose to make our game run at a Fixed Frame Rate we will have a static amount of time

between each frame being displayed, during which the computer can generate the next frame. This has

some advantages, as well as disadvantages.

One advantage is that some of the game code (such as physics calculations) can be slightly

simplified, since the game will run at the same speed on every computer. Additionally if you're writing

for a static platform (like a console), you can be sure that the available hardware will run your game

without issues. Many old consoles and arcade games used this method.

There is a pretty significant disadvantage to this method though. If the computer running your

game isn't fast enough to generate each frame in the alloted period of time, your game will run visibly

slower as there is no mechanism in place to compensate for this.

2.1.1 Implementing a Fixed Frame Rate Game Loop
First, we need to decide what frame rate we want our game to operate at. A higher frame rate

will be visibly smoother, but it will also take a faster computer to generate the higher number of frames

each second. Using a lower frame rate may make the game appear choppy (if the frame rate is less than

about 20), but it will also be less resource demanding for the computer it's running on. Usually, 30

frames per second is a safe bet. It's not so low as to be visibly choppy, and not so high that common

7

computers won't be able to run the game.

So what do we need to do to make our game loop cycle at a specified rate? Well, first off we

need a function that will allow us to keep track of time very precisely (at least to 1/1000 of a second).

We also need a function that can delay the cycling of our loop for a precisely specified period of time.

There are a number of libraries we can use to do this. Some of them are system specific, but the one

we're going to be using is cross-platform and available for Windows, Linux, Mac OSX, and a number

of other systems.

2.1.2 Introducing SDL
SDL (Simple Directmedia Layer) is a cross-platform multimedia library that provides low level

access to audio, keyboard, mouse, joystick, 2D video framebuffer, and 3D hardware (via OpenGL) .

You'll need to get the SDL development and runtime libraries for your system, they are available at

www.libsdl.org. It is a relatively easy to use library, with many functions useful for writing games.

We're only interested in two of them at the moment.

SDL_GetTicks() returns the number of system ticks that have taken place since the start of

the program. There are 1000 ticks per second, so we can effectively use this to track the passage of time

down to the millisecond (one one-thousandth of a second).

 SDL_Delay(Uint32 ms) is used to delay the program from processing further instructions

for a specified number of milliseconds. We specify how long to delay by passing an unsigned 32-bit

integer as the functions only parameter, ms.

2.1.3 Using SDL to implement frame rate control
So now that we've decided what frame rate we want our game to run at (in this case, 30 frames

per second), we need to calculate how long each frame has to be generated (and consequently, how

long each frame will be displayed on the screen). So take 1000 (the number of milliseconds in a

second, and also the unit of measurement provided by the function SDL_GetTicks()) and divide it

by our chosen frame rate. In this case, we get about 33 milliseconds (1000ms / 30fps = 33.33ms per

frame).

Depending on how complex the game is, a given computer may not take the entire alloted

period of time to generate each frame. We need to time how long it takes to generate each frame, and

http://www.libsdl.org/

8

then subtract that from the alloted period of time to establish how long to idle until the frame should be

displayed on screen. Let's say that the computer takes 9ms to complete all the game logic and render

the frame on screen. We still have 24ms before the next frame should be rendered, so we wait. Below is

a code example of how this type of loop could be written in C:

#include <SDL.h> //need to include the SDL header file

int main(int argc, char *argv[])

{

int bRunning = 1;

int frameRate = 30;

frameMs = 1000 / frameRate; //calculate the length of each frame

while (bRunning)

{

startMs = SDL_GetTicks(); //when the frame starts

DoGameLogic(); //game code

RenderFrame(); //display the frame

endMs = SDL_GetTicks(); //when the frame calculations end

delayMs = frameMs - (endMs - startMs); //how long to delay

SDL_Delay(delayMs); //delay processing

//once delay is finished, loop cycles again

}

return 0;

}

2.2 Variable Frame Rate
In the last section you learned how to use a fixed frame rate game loop. A fixed frame rate loop

can be useful in some situations, but in most cases it's disadvantages outweigh it's benefits. This is

especially apparent if the game is running on a slow computer, or if some action going on in the game

takes a lot of processing time and slows the game down.

Enter, Variable Frame Rate. As the name implies, a variable frame rate will change constantly.

This method can take into account slow computers and intense calculations, all the while making sure

9

events in the game happen at the right speed. The game loop and some of your game logic will be a bit

more complex, but the added complexity will more than pay off with it's flexibility. This type of loop

can make sure that everything moves at the right speed because all of your calculations will be based

on the passage of time, as opposed to the passage of each frame.

2.2.1 How it works
Before we can get into the code and see this type of loop in action, there are a few more

concepts to discuss. The Variable Frame Rate Game Loop is noticeably different from it's fixed

counterpart, and requires a bit more code to be used effectively. Since our frame rate can fluctuate,

there is no limit on how much time the computer can take to render a frame. Simply put, the frame is

displayed on the screen when it is finished.

Almost certainly, each frame is going to take a different amount of time to be rendered due to

different things going on in the game. Some things such as intense physics calculations can drastically

fluctuate in the time they take to complete. At one moment, a computer might be running a game at 60

frames per second, and the next moment something happens which brings it to a crawling 20 frames

per second. If you've ever gone out and purchased a brand new game, only to bring it home and

discover that it runs poorly on your several-year-old machine, you know exactly what I'm talking

about. Even though the computer cannot display the frames as rapidly as one might hope, the game

physics and events still take place at their proper rates. For example, in a racing game your vehicle

might move at 50 units per second regardless of whether the game is running at 15 frames per second,

or 200!

So how can you apply this very useful feature to your game? First you need to understand

Delta Time. In mathematics, the term Delta is used to describe a change in something. In this case,

we're describing the change in time between frames. Since each frame will take a different amount of

time to be processed, we need to account for Delta Time in our games calculations. Most obviously,

we will have to use it in physics calculations that update the positions of game objects.

In order to do this, we have to time how long each frame takes to process and pass that value to

each calculation. You might be thinking “How do I know how long a frame is going to take to take to

process, before it gets processed?”. That's a valid question, and the answer is: you don't. Since we can't

see into the future, we take the Delta Time of the previous frame, and pass it to the calculations of the

next frame. This creates a slight delay between player input, and the effects of that input being updated

10

on the screen. However as long as the frame rate is kept relatively high (20+), this delay is not

perceptible. Here's an example of a common game physics calculation that takes Delta Time into

account.

object.x = object.x + (object.speed * deltaTime);

Your game objects velocity should be measured with the same unit as deltaTime. In this case, if

object.speed were set to 300 units per second, and deltaTime were set to 1, then the objects

position would be adjusted by 300 units according to the one second that has passed.

2.2.2 Implementing a Variable Frame Rate Game Loop
If you haven't read section 2.1.2 “Introducing SDL”, quickly go back and read it. We're going to

continue to use some functions from the SDL library. Below you will see an example of a program with

a Variable Frame Rate Game Loop written in C.

#include <stdio.h>

#include <SDL.h> //need to include the SDL header file

void Update(int deltaTimeMs);

int bRunning;

int main(int argc, char *argv[])

{

int frameStart, frameEnd, deltaTime;

frameStart = 0;

frameEnd = 0;

deltaTime = 0;

bRunning = 1;

while (bRunning)

{

11

frameStart = SDL_GetTicks();

Update(deltaTime);

frameEnd = SDL_GetTicks();

deltaTime = frameEnd – frameStart;

}

return 0;

}

void Update(int deltaTimeMs)

{

float deltaTimeS;

deltaTimeS = (float)(deltaTimeMs) / 1000;

//update code

//example physics calculation using delta time:

//object.x = object.x + (object.speed * deltaTimeS);

printf("Elapsed time: %fS.\n", deltaTimeS);

}

If we examine the above code, it's relatively easy to see how this type of loop works. You will

also see that our game calculations are moved to the Update(int deltaTimeMs) function. This

is not absolutely necessary, but it improves code readability. Before game calculations take place in

Update(int deltaTimeMs), we set frameStart to the current tick count. Once calculations

are finished, we set frameEnd to the current tick count. We then find the difference between these

two points in time, which is equal to how much time (in milliseconds) has passed. This is the Delta

Time. When the loop cycles around again, the Delta Time of the last frame gets fed into

Update(int deltaTimeMs) to be used in the game calculations for the next frame.

If you're thinking ahead, you might notice a slight problem with the code above that only occurs

under certain circumstances. What happens if the amount of time that passes between each frame is less

than one millisecond? Our timer is only able to track time down to the millisecond, anything less than

that will return a Delta Time of zero. So even though some time has passed (albeit very little time), our

12

calculations get fed a Delta Time value of zero. Of course we all know that anything multiplied by zero

is zero, so Update(int deltaTimeMs) will essentially do nothing, even though time has passed.

This probably sounds like an issue that's unlikely to occur very often, and in most cases you'd be right.

With modern computers however, even complex calculations can be completed extremely quickly.

Sometimes, in less than one millisecond (especially if your game is very simple!).

So how can we rectify this issue? The solution is rather simple, we just have to make sure that at

least one millisecond passes between each frame. We can add a bit of code into the above loop that will

accomplish this. Place the following code immediately after the start of your game loop, and

immediately before frameStart = SDL_GetTicks();.

if (deltaTime < 1)

{

frameStart = SDL_GetTicks();

SDL_Delay(1);

frameEnd = SDL_GetTicks();

deltaTime = frameEnd – frameStart;

}

We could simplify the above condition to include only SDL_Delay(1);, but that presents us

with yet another problem. SDL_Delay(Uint32 ms) is not a perfect function. It will occasionally

delay the program for up to 10 milliseconds longer than the time we specify! If we don't time how long

it actually delays the program for, this will cause our calculations that use Delta Time to become

inaccurate. Though as long as we time how long the program is actually delayed for (and as long as it's

longer than 1ms, which we can be sure of), the game calculations will be accurate.

Conclusion
In this lesson we have learned what the game loop is, how to use it, as well as fixed and variable

frame rate management techniques. Additionally, we touched on using the SDL library to provide some

basic functionality needed to write programs featuring the concepts discussed. I hope you can take this

knowledge and apply it to your exciting game projects in the future!

	Introduction
	1.0	The Game Loop
	1.1	What is the Game Loop?
	1.2	Implementing a Game Loop

	2.0	Frame Rate Management
	2.1	Fixed Frame Rate
	2.1.1 Implementing a Fixed Frame Rate Game Loop
	2.1.2 Introducing SDL
	2.1.3 Using SDL to implement frame rate control

	2.2	Variable Frame Rate
	2.2.1 How it works
	2.2.2 Implementing a Variable Frame Rate Game Loop

	Conclusion

