
1

Teensy_sPWM Reference
Version 0.1 (release date 10/22/12)

Overview
This is a library for emulating pulse-width modulation on Teensy 2.0 and similar 
devices.

How to use
Using this library requires including Teensy_sPWM.h in your source file(s). Before 
doing anything else, you must call PWM_init(int Hz), specifying a value for Hz. This 
will set up the library and all necessary subsystems, with pulse-width set by the 
frequency you specify in Hz.

You must have a program loop, in which PWM_loop() must be called regularly to 
generate the pulses. It should be called as often as possible, such as in an idle loop.

Functions

int PWM_init(unsigned int Hz, char options)

Initializes Arduino library so functions like millis() and micros() can be used. Initializes 
variables that associate pin letters and numbers with their respective internal 
representations. Sets all pins to 0% PWM. Sets the pulse width to the corresponding 
length as specified by the Hz parameter. The parameter options is used to set various 
internal operating modes. Valid options are:

MAKE_UP_LOST_TIME – When enabled the system will attempt to make up for 
delays to power a pin from the last cycle during the next one, and will subtract excess 
time spent in a previous powered cycle from the next one.

void PWM_loop(void)

This function is responsible for updating pin statuses and pulse regulation. It should be 
called very often, ideally from a loop that runs infinitely (unless you wish to disable 
PWM).

int set_pin_PWM(char port, char pin, uint8_t pwmPercent)



2

Sets the PWM level for a given pin. port should be a letter between A and F 
representing the port letters on the Teensy. pin should be an integer between 0 and 7 
representing the respective pin number on a given port. pwmPercent is the level of 
PWM and should be an integer between 0 and 100. This function returns 1 on success 
and 0 on failure. The following line would set pin B3 to PWM level of 75 percent:

set_pin_PWM('B', 3, 75);

int set_pin_PWM_normalized(char port, char pin, float normPwm)

This function is identical to set_pin_PWM, except for the parameter normPwm. You 
can pass a floating point value from 0.0 to 1.0 in normPwm, representing values from 0 
to 100 percent. This function returns 1 on success and 0 on failure.

int set_abstract_pin_PWM(uint8_t pin, uint8_t pwmPercent)

Sets the PWM level for a given abstractly numbered pin. pin should be an integer 
between 0 and the number of pins on your given device, representing the respective pin 
number of this functions numbering convention (0 starts at upper left and goes down, 
continues at bottom right upwards, and then inward to the left. TODO: link or include a 
diagram showing pin numbering for different devices). pwmPercent is the level of 
PWM and should be an integer between 0 and 100. This function returns 1 on success 
and 0 on failure. The following line would set pin B7 to PWM level of 75 percent, as pin 
B7 is abstract pin number 4:

set_abstract_pin_PWM(4, 75);

int set_abstract_pin_PWM_normalized(uint8_t pin, float normPwm)

This function is the same as set_abstract_pin_PWM, except for the parameter 
normPwm. You can pass a floating point value from 0.0 to 1.0 in normPwm, 
representing values from 0 to 100 percent. This function returns 1 on success and 0 on 
failure.

int set_all_abstract_pins_PWM(uint8_t pwmPercent)

Sets all pins to the PWM percentage passed in pwmPercent. pwmPercent is the level 
of PWM and should be an integer between 0 and 100. This function returns 1 on success 
and 0 on failure.



3

int set_all_abstract_pins_PWM_normalized(float normPwm)

Sets all pins to the PWM level passed in normPwm. You can pass a floating point value 
from 0.0 to 1.0 in normPwm, representing values from 0 to 100 percent. This function 
returns 1 on success and 0 on failure.

int set_abstract_pin_range_PWM(int start, int end, uint8_t pwmPercent)

Sets all abstract pins in the range starting at start and ending at end to the PWM level 
specified in pwmPercent. pwmPercent is the level of PWM and should be an integer 
between 0 and 100. This function returns 1 on success and 0 on failure.

int set_abstract_pin_range_PWM_normalized(int start, int end, float normPwm)

Sets all abstract pins in the range starting at start and ending at end to the PWM level 
specified in normPwm. You can pass a floating point value from 0.0 to 1.0 in 
normPwm, representing values from 0 to 100 percent. This function returns 1 on 
success and 0 on failure.

Last updated 10/19/12


	Teensy_sPWM Reference
	Overview
	How to use
	Functions
	int PWM_init(unsigned int Hz, char options)



